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Abstract. Integral kernels describing the pair interaction of reggeized gluons and quarks are reconstructed
in terms of conformal symmetric 4-point functions in the transverse plane of impact parameters.

1 Introduction

The conformal symmetry emerging in the leading order
BFKL equation [1] played a major role in its solution [2]
and in a number of related investigations. The symmetry
is useful in formulating the multiple reggeized gluon ex-
change exhibiting integrability properties [3,4]. Remark-
able symmetry features of the gluonic reggeon interaction
have been pointed out [5] and relevant methods of inte-
grable systems have been adapted to the problem [6–9].
This symmetry has been observed also in the interaction
of reggeized quarks with each other and with the leading
reggeized gluons [10].

In the BFKL pomeron transition vertices [11,12] the
conformal symmetry structure is an important aspect [13–
15,18]. The role of this symmetry in the dipole picture
[16,17] and its relation to the BFKL formulation has been
shown e.g. in [19–21].

The leading order reggeized gluon interaction and the
triple vertex of BFKL pomerons have been analyzed re-
cently with respect to their conformal symmetry proper-
ties [22], discussing also the relation to the dipole picture
and the Balitsky–Kovchegov equation.

In the generalized leading logarithmic approximation
the exchanged reggeized QCD quanta, called reggeons in
the following, appear as particles moving in transverse
(impact parameter) space interacting pairwise. The sym-
metry acts as the Möbius transformation on the (complex-
valued) position variable running over the transverse
plane,

z → z′ =
az + b

cz + d
, z → z∗′ =

ãz + b̃

c̃z + d̃
. (1.1)

In view of the symmetry of the interaction the
reggeon states can be described by holomorphic and anti-
holomorphic weights (�) = (�, �̃) characterizing the con-
formal representations, or by the scaling dimension � + �̃
and the spin �− �̃ = [�]. The states of a single leading glu-
onic reggeon are characterized by the weights (�) = (0, 0)
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and the fermionic reggeons by (�) =
( 1

2 , 0
)

or
(
0, 1

2

)
in

dependence on their s-channel helicity. The interaction of
fermionic reggeons of opposite helicity results in double-
logarithmic contributions. These contributions can be ac-
counted for by displacing in this anti-parallel helicity con-
figuration the weights as (�) =

(
ω
4 ,

1
2 − ω

4

)
or

( 1
2 − ω

4 ,
ω
4

)
[10]. Here ω is the complex angular momentum i.e. the
variable conjugated to the energy squared s in the Mellin
transformation defining the partial waves in the Regge
asymptotics.

The states corresponding to the principal series of rep-
resentations of SL(2, C) have integer or half-integer val-
ues of spin n and scaling dimension 1 + 2iν with ν real,
(�) =

( 1+n
2 + iν, 1−n

2 + iν
)
.

In the present paper we reconstruct the pairwise
reggeon interaction relying on this symmetry. We repre-
sent the interaction in terms of integral operators with
integrations over the transverse impact parameter plane.
The input is the mentioned conformal weights of the one-
reggeon states and the eigenvalues of the QCD one-loop
interaction operators on two-reggeon states corresponding
to the principal series. The latter are well known for the
BFKL (gluon–gluon) case [1] and have been obtained in
[10] for the cases involving fermionic reggeons by solving
the corresponding version of BFKL-type equations in the
momentum representation in the forward kinematics.

This study was motivated in particular by previous
studies concerning the Bjorken asymptotics, where the
one-loop parton interaction or leading-twist composite op-
erator renormalization has been represented in terms of
conformal symmetric operators [23,24].

2 Symmetric correlators and operators

2.1 Correlators

We are going to build the symmetric interaction opera-
tors with integral kernels being symmetric 4-point func-
tions. Symmetric n-point functions with the weights (�i)
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corresponding to the point xi obey

n∑
i

Sa
i,�i
G(x1, ..., xn) = 0,

n∑
i

S̃a
i,�i
G(x1, ..., xn) = 0.

(2.1)
The generators of the holomorphic Möbius transformation
(1.1) are

S−
i,0 = ∂i, S0

i,0 = xi∂i, S+
i,0 = −x2

i ∂i, (2.2)

and the ones of the weight � representation are

S−
i,� = S−

i,0, S0
i,� = x−�

i S0
i,0x

�
i , S+

i,0 = x−2�
i S+

i,0x
2�
i .

(2.3)
The anti-holomorphic generators S̃a

i,� have the analogous
form with the weight � replaced by �̃ and the holomor-
phic variables xi and derivatives ∂i replaced by the anti-
holomorphic ones. The symmetry conditions (2.1) are
solved by a power-like expression in the differences of co-
ordinates xij = xi − xj ,

∏
i<j

x
aij

ij x
∗ãij

ij , (2.4)

with the exponents (aij = aji) obeying

n∑
j=1

aij = −2�i,
n∑

j=1

ãij = −2�̃i. (2.5)

For n = 2, 3, 4 this includes the well-known facts that
the 3-point functions are in general uniquely defined by
the weights, that 2-point functions are non-vanishing for
coinciding weights only, and that the 4-point functions
are determined by the weights up to an arbitrary function
of the anharmonic ratio. The latter case, n = 4, is of
particular interest in our context. We denote the index
values i, j by 1, 2, 1′, 2′ and the corresponding weights by
�1, �2, �̄1′ �̄2′ . We parameterize the exponents as

a12 = d+
σ

2
− �1 − �2, a1′2′ = d+

σ

2
− �̄1′ − �̄2′ ,

a12′ = h+
σ

2
− �1 − �̄2′ , a1′2 = h+

σ

2
− �̄1′ − �2,

a11′ = −d− h− �1 − �̄1′ , a22′ = −d− h− �2 − �̄2′ ,

σ = �1 + �2 + �̄1′ + �̄2′ . (2.6)

The analogous relations hold for the exponents ãij of
the anti-holomorphic powers. Here and in the following
expressions typically consist of holomorphic and anti-
holomorphic parts and we follow [7] in using the short-
hand notation

(α) = (α, α̃), [x](α) = xα · x∗α̃,

[α] = α− α̃, a(α) =
Γ (1 − α̃)
Γ (α)

. (2.7)

If the entries in the doublet (α) are equal numbers we shall
sometimes write e.g. (1) instead of (1,1).

The expressions (2.4), (2.5) and (2.6) define single-
valued functions of the complex variables xi if [aij ] are
integers.

The dependence of the 4-point functions on the two
doublets of parameters (d), (h) enters as exponents of an-
harmonic ratios,

r−d−h
ts · rh

tu, rts =
x11′x22′

x12x1′2′
, rtu =

x12′x21′

x12x1′2′
. (2.8)

Because these ratios are dependent,

rtu = rts − 1, (2.9)

a generic form of the symmetric 4-point function can be
represented by linear combinations of (2.4) and (2.6) with
only one doublet of the parameters (d), (h) varying.

In the particular cases of some exponents aij being
negative integers besides the monomials (2.4) we have
other expressions obeying the same symmetry conditions
(2.1). For example, if (a11′) = (−1) then the expression
with the factor |x2

11′ |−1 replaced by δ(2)(x11′) has the same
behavior under conformal transformations.

2.2 Operators

We are going to construct symmetric operators using the
symmetric n-point functions as integral kernels.

The point about negative-integer exponents mentioned
above shows up also in the construction of operators. This
is illustrated in the simple example of the 2-point function
with (�1) = (�1′) =

( 1−ε
2

)
acting as the operator kernel on

f(x):
∫

d2x1′

|x11′ |2−2ε
f(x1′) (2.10)

=
π
ε
f(x1) +

∫
d2x1′

|x11′ |2 (f(x1′) − f(x1)) + O(ε).

We find the decomposition rule in the limit,

1
|x11′ |2−2ε

=
π
ε
δ(2)(x11′) +

1
|x2

11′ |+ + O(ε). (2.11)

In the limit ε → 0 we have two operators (acting on one-
reggeon wave functions) with the same symmetry proper-
ties, one of them is just the identity operator.

Consider also the operator defined by the 2-point func-
tion with (�1) = (�1′) =

(−1 + a+ n
2 ,−1 + a− n

2

)
, n

integer. Acting on the function of the form ψb,m(x) =
xm|x|−2+2b−m, m integer, one obtains a similar function
with shifted parameters, ψa+b,m+n,

∫
d2x1′

xn
11′

|x11′ |2−2a+n

xm
1′

|x1′ |2−2b+m

= π
xn+m

1

|x1|2−2(a+b)+n+m
(2.12)

× Γ
(
1 − a− b+ n+m

2

)
Γ

(
a+ n

2

)
Γ

(
b+ m

2

)
Γ

(
1 − a+ n

2

)
Γ

(
1 − b+ m

2

)
Γ

(
a+ b+ n+m

2

) .
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The operator is defined by the integral for a > 0, b > 0, a+
b < 1. For other values of the parameters we define the
operator by analytic continuation provided by the right-
hand side. In terms of the short-hand notation (2.7) the
latter relation can be written as∫

d2x1′ [x11′ ](−α)[x1′ ]−(β) (2.13)

= πa(α)a(β)a(2 − α̃− β̃)[x1](−α−β+1),

with (α) = (1−a+ n
2 , 1−a− n

2 ), (β) = (1−b+ m
2 , 1−b− m

2 ).
A more general form of this relation is obtained by shifting
the points x1, x1′ by x2 and doing the inversion about an
arbitrary point x3:∫

d2x1′ [x11′ ](−α)[x21′ ](−β)[x31′ ](−γ)

= πa(α)a(β)a(γ)[x12](γ−1)[x23](α−1)[x31](β−1),

(α+ β + γ) = (2). (2.14)

We turn to the operators acting on two-reggeon states,
i.e. on functions of two complex variables x1, x2, the be-
havior under conformal transformations of which is char-
acterized by the weights (�1), (�2). Two-reggeon states of
definite weight (�0) are represented by the 3-point func-
tions

E
(�0)
(�1),(�2)

(x1, x2;x0) (2.15)

= [x12](�0−�1−�2)[x10](�2−�1−�0)[x20](�1−�2−�0).

The position variable x0 serves as a label of states within
the representation (�0).

We consider operators acting symmetrically from the
tensor product representation V(�1′ )⊗V(�2′ ) to V(�1)⊗V(�2).
Then their kernels are symmetric 4-point functions, see
(2.4) and (2.5), with the weights (�1), (�2), (�̄1′) = (1 −
�1′), (�̄2′) = (1 − �2′).

E
(�0)
(�1),(�2)

(x1, x2;x0) are eigenfunctions of these opera-
tors in the case (�1) = (�1′), (�2) = (�2′). Generic sym-
metric operators with these weights can be represented in
terms of these kernels by variation of only one doublet of
parameter out of the two (d), (h). If these parameters are
related by (d + h + 1) = (0) at (�1) = (�1′), (�2) = (�2′)
the integrand simplifies by vanishing of the exponents of
x11′ , x22′ . In this particular case we denote the kernel by
K

(d)
(�1),(�2)

(x1, x2;x1′ , x2′) and the corresponding operator

by K̂(d)
(�1),(�2)

. The eigenvalue relation reads

K̂
(d)
(�1),(�2)

E
(�0)
(�1),(�2)

(x1, x2;x0)

=
1
π2

∫
d2x1′d2x2′

×K(d)
(�1),(�2)

(x1, x2;x1′ , x2′)E(�0)
(�1′ ),(�2′ )(x1, x2;x0)

= λ
(d)
(�1),(�2),(�0)

E
(�0)
(�1),(�2)

(x1, x2;x0). (2.16)

The eigenvalues are calculated by applying (2.14) (com-
pare [7])

λ
(d)
(�1),(�2),(�0)

= (−1)[d+�1−�2]a(1 + d− �1 + �2)a(1 + d+ �1 − �2)
×a(1 − d− �0)a(−d+ �0). (2.17)

Notice that the product λ(d)
(�1),(�2),(�0)

λ
(−d)
(�1),(�2),(�0)

does not
depend on (�0). Therefore the product of the correspond-
ing operators is the identity up to normalization (on the
space of functions spanned by (2.15) with (�0) taking the
values of the principal series),

K̂
(d)
(�1),(�2)

K̂
(−d)
(�1),(�2)

= ρ(�1, �2, d)Î . (2.18)

Moreover, K̂(d)
(�1),(�2)

obeys the Yang–Baxter relation with
(d) playing the role of the spectral parameter [7].

We expand the (�0) dependent factors in the eigenval-
ues at (d) = (∆) − ε,

a(1 −∆− �0 − ε)a(−∆+ �0 − ε)
= a(1 −∆− �0)a(−∆+ �0)

×
{

1 + ε[χ−∆(�0(1 − �0)) + χ∆̃(�̃0(1 − �̃0))

− 4ψ(1)] + O(ε2)
}
. (2.19)

Here we have used the notation

χ∆(x) = ψ(1) − ψ(x+∆) − ψ(1 − x+∆), (2.20)

which appeared in [10] in writing the one-loop results for
the eigenvalues of the QCD reggeon interactions with (∆)
taking the particular values (∆) = ±(�1 − �2).

We notice further that the factors in the eigenvalues
(2.17) that do not depend on (�0) have a pole in ε at (d) =
±(�1−�2)−ε. This singularity is caused by some exponents
in the kernel approaching negative integers, indeed

(a12′) = (−1 − d− �1 + �2),
(a21′) = (−1 − d+ �1 − �2). (2.21)

From the above discussion it is clear that in this case the
definition of regular symmetric operators needs some care,
following the example of a one-point operator (2.10) and
(2.11). This will be done for the physically relevant cases
in the following.

3 Identical reggeons

Consider now the case (�1 − �2) = (0) relevant for the
interaction of two gluonic reggeons (BFKL), (�1) = (�2) =
(0), or of two fermionic reggeons of parallel helicity, (�1) =
(�2) =

( 1
2 , 0

)
or

(
0, 1

2

)
. At (d) = −ε we have

λ
(−ε)
(�1),(�2),(�0)

=
(−1)[�0]

ε2
{1 + ε[χ0(�0(1 − �0))

+ χ0(�̃0(1 − �̃0))] + O(ε2)
}

(3.1)
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1

2

1’

2’

a b

Fig. 1. Identical reggeon interaction. a Fermions of parallel
helicity, b gluonic reggeons (dashed lines)

The coefficient of ε−1 is proportional to the well-known
BFKL pomeron eigenvalues [1,2] with �0 = 1−n

2 +iν, [�0] =
n. The exponents of the kernels (2.6) at (d) = (−ε) are

(a12′) = (a21′) = (−1 + ε),
(a1′2′) = (−1 − ε+ �1 + �2),
(a12) = (1 − ε− �1 − �2). (3.2)

Consider first the case (�1) = (�2) = (�) �= 0, where the
singularity of the type (2.10) and (2.11) appears twice.
In the limit ε → 0 the 4-point function (2.4) and the
ones with some of the negative-integer powers replaced
by δ-functions behave equally under conformal transfor-
mations. We find combinations of these 4-point functions
that define regular operators.

Replacing both |x2
12′ |−1 and |x2

21′ |−1 by the corre-
sponding δ-functions we obtain the permutation opera-
tor P̂12 with the kernel δ(2)(x12′)δ(2)(x21′). Replacing in-
stead only one of these negative-integer powers by the cor-
responding δ-function we define the symmetric operator
K̂0+

(�1)
with the kernel

K0+
(�) = [x12](1−2�)[x1′2′ ](−1+2�) (3.3)

×
{

1
|x2

21′ |+ δ
(2)(x12′) +

1
|x2

12′ |+ δ
(2)(x21′)

}
.

Approaching (d) = (0) with the generic operator K̂(−ε)
(�),(�)

we have the expansion in terms of the latter two operators,

K̂
(−ε)
(�),(�) = A(ε)P̂12 +B(ε)K0+

(�) , (3.4)

A(ε) = ε−2(π2 + O(ε)), B(ε) = ε−1(π + O(ε)).

We identify the operator P̂12 ·K̂0+
(�) as the one representing

the identical reggeon interaction for (�1) = (�2) = (�) �= 0,
in particular the parallel helicity fermionic reggeons; see
Fig. 1a. Its kernel is obtained from (3.3) by interchanging
the labels 1′, 2′. Its eigenvalues on the two-reggeon func-
tions (2.15) are

χ0(�0(1 − �0)) + χ0(�̃0(1 − �̃0)). (3.5)

In the case (�1) = (�2) = (0) simultaneously with
(a12′) = (a21′) also (a1′2′) approaches (−1). On two-
reggeon wave functions vanishing at coinciding points
x1 = x2 a regular operator can be defined by a modified

combination of the ones above obtained by the replace-
ment of the powers |x2

12′ |−1 and |x2
21′ |−1 by δ-functions.

The corresponding kernel can be written in terms of an
integral over the auxiliary point x3′ as

K0+
(0)

=
∫

d2x3′ |x2
12|

|x2
13′ ||x2

23′ |
×

(
δ(2)(x21′)δ(2)(x2′3′) + δ(2)(x13′)δ(2)(x1′3′)

− δ(2)(x12′)δ(2)(x21′)
)
. (3.6)

With the operator defined by this kernel the expansion
(3.4) holds analogously. The operator P̂12 ·K̂0+

(0) represents
the gluonic reggeon interaction; see Fig. 1b. Its kernel is
obtained from (3.6) by interchanging the labels 1′, 2′ and
its eigenvalues are given by (3.5).

The resulting kernel is the one known in the dipole
picture of BFKL [17]. This representation of the BFKL
kernel and its relation to other ones has been studied re-
cently [22].

4 Fermion–gluon interaction

The pair interaction of fermionic and gluonic reggeons in
an overall color singlet exchange is determined by a sym-
metric operator with the weights (�1) =

( 1
2 , 0

)
, (�2) =

(0, 0). The corresponding kernel K(d)
(�1),(�2)

is single-valued
for [d] = 1

2 + m, m integer, and the wave functions
(2.15) are single-valued for [�0] = 1

2 + n, n integer. At
(d) = (�1 − �2 − ε) the eigenvalues (2.17) behave like

λ
(�1−�2−ε)
(�1),(�2),(�0)

= − (−1)n

ε2

(
�0 − 1

2

)

×
{

1 + ε
[
χ− 1

2
(�0(1 − �0)) + χ0(�̃0(1 − �̃0)) + 1

]

+ O(ε2)
}
, (4.1)

and at (d) = (−�1 + �2 − ε) we obtain

λ
(−�1+�2−ε)
(�1),(�2),(�0)

=
(−1)n

ε

(
�0 − 1

2

)−1

×
{

1 + ε
[
χ 1

2
(�0(1 − �0)) + χ0(�̃0(1 − �̃0))

]

+ O(ε2)
}
. (4.2)

At (d) = (�1−�2−ε) we encounter two exponents (2.6)
approaching negative integers, (a12′) = (−2,−1) + (ε),
(a12′) = (−1,−1) + (ε). We have the regular symmetric
operators defined by the kernels

K+( 1
2 ,0),δ = −x12∂2′δ(2)(x12′) · δ(2)(x21′),
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1

2

1’

2’

a b

Fig. 2. Interaction of reggeized fermion and gluon, a by gluon
exchange, b by fermion exchange

K+( 1
2 ,0),+ = |x2

12|
x1′2′

|x2
1′2′ |

{
∂2′δ(2)(x12′)

1
|x2

21′ |+
+ ∂2′

1
|x2

12′ |+ δ
(2)(x21′)

}
, (4.3)

and the decomposition

K̂
( 1

2 −ε,−ε)
( 1

2 ,0),(0,0)
= A+(ε)K̂( 1

2 ,0),δ +B+(ε)K̂( 1
2 ,0),+,

A+(ε) =
1
ε2

(π2 + O(ε)),

B+(ε) =
1
ε
(π + O(ε)). (4.4)

At (d) = (−�1 + �2 − ε) we have the following exponents
approaching negative integers: (a12′) = (a1′2′) = (−1 +
ε). On wave functions vanishing at coinciding arguments,
x1 = x2, we have regular symmetric operators given by
the kernels

K−( 1
2 ,0),δ = x∗

12|x2
1′2′ |−1δ(2)(x12′)

x21′

|x2
21′ | ,

K−( 1
2 ,0),+ = x∗

12|x2
1′2′ |−1 1

|x2
12′ |+

x21′

|x2
21′ | , (4.5)

and the decomposition

K̂
(− 1

2 −ε,−ε)
( 1

2 ,0),(0,0)
= A−(ε)K̂−( 1

2 ,0),δ +B−(ε)K̂−( 1
2 ,0),+,

A−(ε) =
1
ε
(π + O(ε)),

B−(ε) = (1 + O(ε)). (4.6)

The operator composed out of the above ones

−
(
K̂(− 1

2 ,0),δK̂( 1
2 ,0),+ + K̂(+ 1

2 ,0),δK̂( 1
2 ,0),−

)
(4.7)

has the eigenvalues on the two-reggeon wave functions
(2.15)

2χ0(�̃0(1−�̃0))+χ 1
2
(�0(1−�0))+χ− 1

2
(�0(1−�0))+1 (4.8)

and in this way represents (up to normalization) the
fermion–gluon reggeon interaction mediated by an s-
channel gluon, Fig. 2a.

We notice also that the operator K̂(− 1
2 ,0),δ having the

eigenvalues on the two-reggeon wave functions (2.15) for
�̃0 = �0 + 1

2 + n equal to (−1)n
(
�0 − 1

2

)−1 represents
the fermion–gluon interaction mediated by a fermion; see
Fig. 2b.

5 Fermions of anti-parallel helicities

Consider first the formal case (�1) =
( 1

2 , 0
)
, (�2) =

(
0, 1

2

)
,

ignoring double-log contributions. At (d) = (±�1 ∓ �2 − ε)
the eigenvalues (2.17) are

λ
(±�1∓�2−ε)
(�1),(�2),(�0)

=
1
ε

Γ
(
�̃0 ∓ 1

2

)
Γ

(
1 − �̃0 ∓ 1

2

)
Γ

(
1 − �0 ∓ 1

2

)
Γ

(
�0 ∓ 1

2

)
×

{
1 + ε

[
χ∓ 1

2
(�0(1 − �0)) + χ∓ 1

2
(�̃0(1 − �̃0)) + 1

]

+ O(ε2)
}
. (5.1)

At (d) = (±�1 ∓ �2) = (±∆) the exponent (a21′) or (a12′)
turns to (−1) and we have the regular symmetric operator
kernels obtained from K

(d)
(�1),(�2)

by replacing the factor
with the exponent −1, |x2

ij |−1, by δ(2)(xij) or by |x−2
ij |+.

In this way we are led to define the kernels

K
1
2 ,δ = x12

x1′2′

|x1′2′ |2 δ
(2)(x21′)

x∗2
12′

|x4
12′ | ,

K
1
2 ,+ = x12

x1′2′

|x1′2′ |2
1

|x2
21′ |+

x∗2
12′

|x4
12′ | ,

K− 1
2 ,δ = x∗

12
x∗

1′2′

|x1′2′ |2 δ
(2)(x12′)

x2
21′

|x4
21′ | ,

K− 1
2 ,+ = x∗

12
x1′2′

|x1′2′ |2
1

|x2
12′ |+

x2
21′

|x4
21′ | . (5.2)

The operator K̂(d)
(�1),(�2)

, with (�1) =
( 1

2 , 0
)
, (�2) =

(
0, 1

2

)
decomposes at (d) = ± ( 1

2 ,− 1
2

) − (ε) as

K̂
(± 1

2 −ε,∓ 1
2 −ε)

( 1
2 ,0),(0, 1

2 )
= A(ε)K̂± 1

2 ,δ +B(ε)K̂± 1
2+,

A(ε) =
1
ε
(π + O(ε)),

B(ε) = (1 + O(ε)) . (5.3)

The operator composed out of the ones defined by the
above kernels (5.2)

K̂− 1
2 ,δK̂+ 1

2+ + K̂+ 1
2 ,δK̂− 1

2 ,+ (5.4)

has the eigenvalues on the two-reggeon wave functions
(2.15)

χ− 1
2
(�̃0(1 − �̃0)) + χ 1

2
(�̃0(1 − �̃0)) + χ 1

2
(�0(1 − �0))

+χ− 1
2
(�0(1 − �0)) + 2. (5.5)

It describes in leading ln s accuracy the interaction of anti-
parallel helicity fermionic reggeons, see Fig. 3, besides the
two-reggeon states with [�0] = 0, where double-log contri-
butions appear.

In the case (�1) =
( 1

2 − ω
4 ,

ω
4

)
, (�2) =

(
ω
4 ,

1
2 − ω

4

)
, ap-

propriate for accounting the double-logarithmic contribu-
tions in the anti-parallel helicity fermion exchange, we en-
counter difficulties with the formulation of integral oper-
ators and wave functions on the plane. The correspond-
ing kernels (2.4) and (2.6) and wave functions (2.15) with
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1’1

2’2

Fig. 3. Interaction of reggeized fermions of anti-parallel helic-
ities

these weights are not single valued irrespective to the par-
ticular choices of (d) and (�0).

We propose to describe the operators, wave functions
and eigenvalues with these weights determined by the
complex angular momentum ω as the analytic continu-
ation from a series of corresponding objects with weights
determined instead by even non-positive integers −2m,
−2m (m = 0, 1, ...) → ω,

(�1,m) =
(

1 +m

2
,−m

2

)
,

(�2,m) =
(

−m

2
,
1 +m

2

)
,

(�1,m − �2,m) = (∆m) =
(

1
2

+m,−1
2

−m

)
,

[�1,m − �2,m] = 1 + 2m,

(�1,m + �2,m) =
(

1
2
,
1
2

)
. (5.6)

The eigenvalues (2.17) decompose at (d) = ±(∆m − ε) as

λ
(±∆−ε)
(�1,m),(�2,m),(�0)

=
1
ε

1
1 + 2m

Γ
(
�̃0 ∓ ( 1

2 +m
))
Γ

(
1 − �̃0 ∓ ( 1

2 +m
))

Γ
(
1 − �0 ∓ ( 1

2 +m
))
Γ

(
�0 ∓ ( 1

2

)
+m

)
×

{
1 + ε

[
χ∓( 1

2+m)(�0(1 − �0))

+χ∓( 1
2+m)(�̃0(1 − �̃0))

+ψ(1 + 2m) + ψ(2 + 2m) − 2ψ(1)]
+ O(ε2)

}
. (5.7)

We see that there is no obstacle to an analytic continua-
tion of the expression on the right-hand side.

We calculate the exponents (2.6) with these weights
and for (d) = ±(∆m − ε) and define kernels in analogy to
(5.2),

K
1
2+m,δ

= x12

(
x12

x∗
12

)m
x1′2′

|x2
1′2′ |

(
x1′2′

x∗
1′2′

)m

δ(2)(x21′)
1

|x2
12′ |

×
(
x12′

x∗
12′

)−2m−1

,

K
1
2+m,+

= x12

(
x12

x121∗

)m
x1′2′

|x2
1′2′ |

(
x1′2′

x∗
1′2′

)m 1
|x2

21′ |+
1

|x2
12′ |

×
(
x12′

x∗
12′

)−2m−1

,

K− 1
2+m,δ

= x∗
12

(
x12

x∗
12

)−m
x∗

1′2′

|x2
1′2′ |

(
x1′2′

x∗
1′2′

)−m

δ(2)(x21′)
1

|x2
12′ |

×
(
x12′

x∗
12′

)2m+1

,

K
1
2+m,+

= x∗
12

(
x12

x∗
12

)−m
x∗

1′2′

|x2
1′2′ |

(
x1′2′

x∗
1′2′

)−m 1
|x2

21′ |+
1

|x2
12′ |

×
(
x12′

x∗
12′

)2m+1

. (5.8)

We have the decomposition of the operators K̂(±∆−ε)
(�1,m),(�2,m)

in to the ones with the above kernels in analogy to (5.3).
The series of operators

K̂−( 1
2+m),δK̂+( 1

2+m)+ + K̂+( 1
2+m),δK̂−( 1

2+m),+ (5.9)

has the eigenvalues on the two-reggeon wave func-
tions (2.15) correspondingly with the weights (�1,m) =( 1+m

2 ,−m
2

)
, (�2,m) =

(
m
2 ,

1+m
2

)
, (�0):

χ− 1
2 −m(�̃0(1 − �̃0)) + χ 1

2+m(�̃0(1 − �̃0))

+χ 1
2+m(�0(1 − �0)) + χ− 1

2 −m(�0(1 − �0))

+2ψ(1 + 2m) + 2ψ(2 + 2m) − 4ψ(1). (5.10)

The case m = 0 is the one considered in the first
part of this section. The series of wave functions with
(�1,m), (�2,m) allows one to describe the “dressed” two-
fermion eigenstates with anti-parallel helicity and the se-
ries of operators (5.9), their interaction in the sense of
the above analytic continuation to the complex ω from
integers −2m. In [10] we have shown that the eigenval-
ues obtained from (5.10) after this continuation describe
anti-parallel helicity fermion exchange in ln s accuracy.

6 Discussion

The perturbative Regge exchanges involving not only the
leading gluonic reggeons are relevant in special semi-hard
processes and contribute e.g. to the small x behavior of fla-
vor non-singlet, spin or chiral-odd structure functions. The
comparison of the reggeon interaction involving fermions
to the standard BFKL case shows an interesting common
symmetry pattern.

Considering the generic conformal operators formu-
lated in terms of conformal 4-point functions, determined
by the weights (�1)(�2) and a further parameter doublet
(d), we have identified the particular operators describing
the one-loop perturbative QCD reggeon interaction. In all
cases the QCD reggeon interaction operator appears in
the decomposition of the generic conformal operator at
the singular values of the parameter (d) = ±(�1 − �2).
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In particular the BFKL one-loop kernel is reproduced in
the dipole form [17], applicable to two-reggeon states de-
scribed by wave functions vanishing at coinciding points
(Möbius representation [22]).

The shift in the conformal spin proportional to the
complex angular momentum accounting for the double-
logarithmic contributions in the anti-parallel helicity
fermion exchange channel would not result in single-valued
integral kernels. We propose to describe the correspond-
ing states and interaction operators by analytic continu-
ation from a series of such objects with half-integer spins
sm = [�m] = ± ( 1

2 +m
)
.
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